Depends on the definition

it's about machine learning, data science and more

Category

Uncategorized

Named Entity Recognition with Bert

Named entity recognition series: Introduction To Named Entity Recognition In Python Named Entity Recognition With Conditional Random Fields In Python Guide To Sequence Tagging With Neural Networks In Python Sequence Tagging With A LSTM-CRF Enhancing LSTMs With Character Embeddings For… Continue Reading →

Understanding text data with topic models

This is the first post of my series about understanding text data sets. In practice, you often want and need to know, what is going on in your data. In this post we will focus on applying a Latent Dirichlet allocation (LDA) topic model to the “Quora Insincere Questions Classification” data set on kaggle.

LSTM with attention for relation classification

Once named entities have been identified in a text, we then want to extract the relations that exist between them. As indicated earlier, we will typically be looking for relations between specified types of named entity. I covered named entity… Continue Reading →

Evaluate sequence models in python

Named entity recognition series: Introduction To Named Entity Recognition In Python Named Entity Recognition With Conditional Random Fields In Python Guide To Sequence Tagging With Neural Networks In Python Sequence Tagging With A LSTM-CRF Enhancing LSTMs With Character Embeddings For… Continue Reading →

Image segmentation with test time augmentation with keras

In the last post, I introduced the U-Net model for segmenting salt depots in seismic images. This time, we will see how to improve the model by data augmentation and especially test time augmentation (TTA). You will learn how to… Continue Reading →

U-Net for segmenting seismic images with keras

Today I’m going to write about a kaggle competition I started working on recently. I will show you how to approach the problem using the U-Net neural model architecture in keras. In the TGS Salt Identification Challenge, you are asked… Continue Reading →

State-of-the-art named entity recognition with residual LSTM and ELMo

Named entity recognition series: Introduction To Named Entity Recognition In Python Named Entity Recognition With Conditional Random Fields In Python Guide To Sequence Tagging With Neural Networks In Python Sequence Tagging With A LSTM-CRF Enhancing LSTMs With Character Embeddings For… Continue Reading →

Explain neural networks with keras and eli5

  In this post I’m going to show you how you can use a neural network from keras with the LIME algorithm implemented in the eli5 TextExplainer class. For this we will write a scikit-learn compatible wrapper for a keras… Continue Reading →

Debugging black-box text classifiers with LIME

Often in text classification, we use so called black-box classifiers. By black-box classifiers I mean a classification system where the internal workings are completly hidden from you. A famous example are deep neural nets, in text classification oftern recurrent or… Continue Reading →

PyData Amsterdam 2018

Last weekend I participated at the PyData Amsterdam 2018 Conference in, you guess it, in Amsterdam. It has been a great conference and I meet a lot of great people and had a very good time in Amsterdam. In this… Continue Reading →

© 2018 Depends on the definition

Up ↑