Depends on the definition

it's about machine learning, data science and more



How to use magnitude with keras

This time we have a look into the magnitude library, a feature-packed Python package for utilizing vector embeddings in machine learning models in a fast, efficient, and simple manner. We want to utilize the embeddings magnitude provides and use them in keras.

Named Entity Recognition with Bert

One of the latest milestones in pre-training and fine-tuning in natural language processing is the release of BERT. This is a new post in my NER series. I will show you how you can fine-tune the Bert model to do state-of-the art named entity recognition in pytorch.

Understanding text data with topic models

This is the first post of my series about understanding text data sets. In practice, you often want and need to know, what is going on in your data. In this post we will focus on applying a Latent Dirichlet allocation (LDA) topic model to the “Quora Insincere Questions Classification” data set on kaggle.

Evaluate sequence models in python

An important part of every machine learning project is the proper evaluation of the performance of the system. In this post I will show you how evaluate sequence models with token-based labels. This way you can get a proper understanding of you sequence model performance.

Explain neural networks with keras and eli5

  In this post I’m going to show you how you can use a neural network from keras with the LIME algorithm implemented in the eli5 TextExplainer class. For this we will write a scikit-learn compatible wrapper for a keras… Continue Reading →

Debugging black-box text classifiers with LIME

Often in text classification, we use so called black-box classifiers. By black-box classifiers I mean a classification system where the internal workings are completly hidden from you. A famous example are deep neural nets, in text classification oftern recurrent or… Continue Reading →

Guide to word vectors with gensim and keras

  Today, I tell you what word vectors are, how you create them in python and finally how you can use them with neural networks in keras. For a long time, NLP methods use a vectorspace model to represent words…. Continue Reading →

Getting started with Multivariate Adaptive Regression Splines

In this post we will introduce multivariate adaptive regression splines model (MARS) using python. This is a regression model that can be seen as a non-parametric extension of the standard linear model.

© 2019 Depends on the definition

Up ↑