Depends on the definition

it's about machine learning, data science and more

Tag

NLP

Named Entity Recognition with Bert

Named entity recognition series: Introduction To Named Entity Recognition In Python Named Entity Recognition With Conditional Random Fields In Python Guide To Sequence Tagging With Neural Networks In Python Sequence Tagging With A LSTM-CRF Enhancing LSTMs With Character Embeddings For… Continue Reading →

Understanding text data with topic models

This is the first post of my series about understanding text data sets. In practice, you often want and need to know, what is going on in your data. In this post we will focus on applying a Latent Dirichlet allocation (LDA) topic model to the “Quora Insincere Questions Classification” data set on kaggle.

LSTM with attention for relation classification

Once named entities have been identified in a text, we then want to extract the relations that exist between them. As indicated earlier, we will typically be looking for relations between specified types of named entity. I covered named entity… Continue Reading →

Evaluate sequence models in python

Named entity recognition series: Introduction To Named Entity Recognition In Python Named Entity Recognition With Conditional Random Fields In Python Guide To Sequence Tagging With Neural Networks In Python Sequence Tagging With A LSTM-CRF Enhancing LSTMs With Character Embeddings For… Continue Reading →

State-of-the-art named entity recognition with residual LSTM and ELMo

Named entity recognition series: Introduction To Named Entity Recognition In Python Named Entity Recognition With Conditional Random Fields In Python Guide To Sequence Tagging With Neural Networks In Python Sequence Tagging With A LSTM-CRF Enhancing LSTMs With Character Embeddings For… Continue Reading →

Explain neural networks with keras and eli5

  In this post I’m going to show you how you can use a neural network from keras with the LIME algorithm implemented in the eli5 TextExplainer class. For this we will write a scikit-learn compatible wrapper for a keras… Continue Reading →

Debugging black-box text classifiers with LIME

Often in text classification, we use so called black-box classifiers. By black-box classifiers I mean a classification system where the internal workings are completly hidden from you. A famous example are deep neural nets, in text classification oftern recurrent or… Continue Reading →

Enhancing LSTMs with character embeddings for Named entity recognition

Named entity recognition series: Introduction To Named Entity Recognition In Python Named Entity Recognition With Conditional Random Fields In Python Guide To Sequence Tagging With Neural Networks In Python Sequence Tagging With A LSTM-CRF Enhancing LSTMs With Character Embeddings For… Continue Reading →

Guide to word vectors with gensim and keras

Today, I tell you what word vectors are, how you create them in python and finally how you can use them with neural networks in keras. For a long time, NLP methods use a vectorspace model to represent words. Commonly… Continue Reading →

A strong baseline to classify toxic comments on Wikipedia with fasttext in keras

This time we’re going to discuss a current machine learning competion on kaggle. In this competition, you’re challenged to build a model that’s capable of detecting different types of toxicity in comments from Wikipedia’s talk page edits. I will show you how to create a strong baseline using python and keras.

© 2018 Depends on the definition

Up ↑