Depends on the definition

it's about machine learning, data science and more

How to use magnitude with keras

This time we have a look into the magnitude library, a feature-packed Python package for utilizing vector embeddings in machine learning models in a fast, efficient, and simple manner. We want to utilize the embeddings magnitude provides and use them in keras.

Text analysis with named entities

This is the second post of my series about understanding text datasets. Here we use the named entities to get some information about our data set.

Named Entity Recognition with Bert

One of the latest milestones in pre-training and fine-tuning in natural language processing is the release of BERT. This is a new post in my NER series. I will show you how you can fine-tune the Bert model to do state-of-the art named entity recognition in pytorch.

Understanding text data with topic models

This is the first post of my series about understanding text data sets. In practice, you often want and need to know, what is going on in your data. In this post we will focus on applying a Latent Dirichlet allocation (LDA) topic model to the “Quora Insincere Questions Classification” data set on kaggle.

LSTM with attention for relation classification

Once named entities have been identified in a text, we then want to extract the relations that exist between them. As indicated earlier, we will typically be looking for relations between specified types of named entity. I covered named entity… Continue Reading →

Evaluate sequence models in python

An important part of every machine learning project is the proper evaluation of the performance of the system. In this post I will show you how evaluate sequence models with token-based labels. This way you can get a proper understanding of you sequence model performance.

Image segmentation with test time augmentation with keras

In the last post, I introduced the U-Net model for segmenting salt depots in seismic images. This time, we will see how to improve the model by data augmentation and especially test time augmentation (TTA). You will learn how to… Continue Reading →

U-Net for segmenting seismic images with keras

Today I’m going to write about a kaggle competition I started working on recently. I will show you how to approach the problem using the U-Net neural model architecture in keras. In the TGS Salt Identification Challenge, you are asked… Continue Reading →

State-of-the-art named entity recognition with residual LSTM and ELMo

This is the sixth post in my series about named entity recognition. This time I’m going to show you some cutting edge stuff. We will use a residual LSTM network together with ELMo embeddings, developed at Allen NLP. You will learn how to wrap a tensorflow hub pre-trained model to work with keras. The resulting model with give you state-of-the-art performance on the named entity recognition task.

Explain neural networks with keras and eli5

  In this post I’m going to show you how you can use a neural network from keras with the LIME algorithm implemented in the eli5 TextExplainer class. For this we will write a scikit-learn compatible wrapper for a keras… Continue Reading →

« Older posts

© 2019 Depends on the definition

Up ↑